Optical switches make motor a variable-speed drive

Oct. 26, 2006
The DynaMotor from DynaMotors Inc., Warrensville Heights, Ohio, uses optically controlled solid-state switches embedded in the rotor windings to control current and, thus, torque, making the motor a self-contained variable-speed drive.

Edited by Stephen Mraz

The DynaMotor from DynaMotors Inc., Warrensville Heights, Ohio (dynamotors.com), uses optically controlled solid-state switches embedded in the rotor windings to control current and, thus, torque, making the motor a self-contained variable-speed drive. The result is high torque on start-up and at low speeds.

The motor has a pair of opposed salient poles whose copper windings connect to two legs of a single or threephase line. The rotor resembles those in universal and dc motors, with slotted steel laminations stacked on a shaft. Copper wire is wound in opposite slots and the two ends of each coil are connected by a solid-state switch, such as a transistor. When the stator poles connect to an ac line, the resultant magnetic field varies with line current and flux passes directly through the rotor, inducing a voltage in each rotor coil. Closing the solid-state switch sends current through the coil, generating flux, torque, and rotation.

When the switch opens, current cannot flow and the coils stop generating torque and rotation. Closing the switch for longer periods produces more torque and increases the speed. Thus, how long, and over what rotational angle, the switches are open determines torque and speed.

A photodetector actuates each switch as it rotates past a stationary illuminated infrared LED. An array of LEDs mounted on the motor end-bell can be turned on for varying amounts of time to adjust motor speed. Rotation direction can be reversed easily without contactors or additional power electronics by merely turning on LEDs on the opposite side of each stator pole.

Optically controlled noncontact, solid-state switches eliminate traditional motor-drive pulse-width modulation that generates significant RFI and ground currents that prevent use on GFCI protected circuits.

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!