Throwing it in reverse with rolling-ring bearings

Dec. 13, 2001
Engineers can get rid of clutches, cams, and other mechanical controls by using rolling-ring bearings in autoreversing motion-control systems.

John Scavitto
Product Line Manager
Amacoil Inc.
Aston, Pa.

Edited by Victoria Reitz

Machines that turn, eject, cut, and spray rely on efficient, automatically reversing linear motion. Rolling-ring linear drives are commonly used in these types of applications because they eliminate the need for clutches, cams, gears, and other external controls. However, in many reciprocating, linear-motion processes, the speed of the drive must be carefully controlled before and after reversals. Ramping speed down and up lessens the jarring effects on payloads.

Machined inner race is the key
At first glance, standard ball bearings look just like rolling-ring bearings. However, inner races on the rolling-ring bearings are machined. Machining standard bearings to make rolling-ring bearings is a precise, proprietary procedure. It gives the bearings a contoured, central ridge running around the entire inner race. Ball bearings have perfectly smooth, flat inner races.

When mounted on a shaft, standard ball bearings reduce friction in the hub of rotating assemblies, such as a wheel. Shaft-to-ring contact is across the full surface of its inner race. As the shaft turns, the inner rotating core absorbs friction as the bearings turn on balls in the raceway.

When mounted on a shaft, rolling-ring bearings touch the shaft only at the apex of the central ridge on a bearing's inner race. There is clearance between the shaft and bearing on either side of the ridge.

When a rolling-ring bearing is angled on a rotating shaft, the force generated by the shaft against the central ridge pushes the bearing along the length of the shaft. The rotary input from the motor-driven shaft is thereby converted to linear output.

The housing, or nut, enclosing the rolling-ring bearings moves with the rings and carries the payload. The drive's linear direction is determined by the adjustable angle at which the bearings contact the shaft.

Roll reversals
In typical rolling-ring linear drives three or four rolling-ring bearings are inside the drive housing. To reverse the direction of the rolling-ring drive, the entire bearing must be flipped to its mirror position on the shaft. The bearing's central ridge provides the pivot on which the bearing assembly is flipped.

On the bottom of the linear drive is a spring-actuated reversal mechanism attached to the rollingring bearing assembly. When the drive reaches the end of its stroke, the angle of the bearing assembly changes and the drive's direction reverses. End stops can be screws, bolts, bushings, or even small air cylinders. They can be placed on the shaft so that the drive reverses at a specific point.

At no time does the bearing lose contact with the drive shaft. This is how rolling-ring linear drives prevent backlash — they eliminate play between shaft and bearing.

Control linear speed without the drive motor
In addition to controlling drive direction, pivoting the bearing to different angles also determines the drive's pitch, that is, the linear distance traveled per shaft revolution. Adjusting the pitch controls linear travel speed relative to each revolution of the linear drive shaft — even if the drive-motor speed remains unchanged. Therefore, a variable-speed system doesn't need clutches, cams, and gears.

For example, increasing the pitch increases the angle of the rollingring bearing on the shaft. Compression against the bearings' central ridges increases because more of the ridge contacts the shaft. The drive moves faster, and therefore covers a longer linear distance per shaft revolution. Likewise, when pitch is decreased, the angle of the bearing on the shaft decreases. There is less compression against the bearings' central ridges. The drive moves slower and with less linear distance per revolution. It is important to note that these changes in linear speed and linear distance of the nut take place without any adjustments to motor speed or direction of shaft rotation. In most cases, rolling-ring drives can use relatively inexpensive, single-speed, unidirectional motors. This type of adjustable pitch control in a linear drive is essential when designing a reciprocating system that has automatic reverse and specific requirements for ramping up and down.

Controlling your reversals
Rolling-ring linear drives can be adjusted to meet a variety of rampdown (deceleration) and ramp-up (acceleration) requirements. Adjustable stops installed on the assembly control stroke length. Various hardware fixtures can be attached to the reversal mechanism to control ramping up and down. The most typical application requirements are: ramp down before reversal, ramp up after reversal, and ramp down before reversal then up after reversal.

When linear speed exceeds 9 ips, the simplest and most common device for decelerating rolling-ring drives before reversal is a V-cam. This is a simple V-shaped fixture mounted to an adjustable end stop. The V-cam hits the modified reversal mechanism well before the final end-stop reversal point. The reversal mechanism slowly rotates as it rides up the V-cam. The drive's pitch is gradually reduced, decreasing linear speed. By the time the linear drive reaches the end stop and the reversal mechanism is fully flipped, linear speed is almost zero because the ring assembly is almost at its zero-pitch position. Decelerating this way, before reversal, dissipates all of the payload's forward inertia before the drive begins moving in the opposite direction.

A less-expensive device, the Kstop, can ramp down the linear drive prior to reversal. K-stops partially rotate the rolling-ring bearing assembly just before the drive reaches the final end stop. With the reversal mechanism partially rotated, the rolling-ring assembly moves toward its perpendicular position and the drive's linear speed drops.

K-stops can be configured to rotate the reversal mechanism so that the bearing is perfectly perpendicular to the shaft. This gives the linear drive zero pitch. The drive "dwells" on the rotating shaft with no linear movement until the ring assembly is again angled on the shaft. Air cylinders are often used to activate the reversal mechanism.

Slow down and ramp up
In applications that need deceleration prior to reversal and then acceleration after reversal, another type of stop, the H-stop, controls the drive-unit pitch. H-stops are attached to the reversal mechanism that determines where the reversal mechanism will begin rotating. The H-stop screw catches the H-lever as the linear drive moves, reducing pitch by rotating the ring assembly. The drive thus begins to slow. After the reversal mechanism has been tripped, a second set screw catches the other end of the H-lever, preventing rotation of the ring assembly to its full pitch position.

In this case, reversal is complete but the rings have not pivoted all the way on the shaft and are still held at an acute angle. Therefore, as the drive moves in the opposite direction, it does so at a reduced speed. As the linear drive continues to move, the H-lever gradually pulls away from the stop, and the ring assembly approaches its fullpitch position. The linear drive then ramps up to full speed when the reversal mechanism completely clears the second stop.

Sponsored Recommendations

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.


May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Solenoid Valve Mechanics: Understanding Force Balance Equations

May 13, 2024
When evaluating a solenoid valve for a particular application, it is important to ensure that the valve can both remain in state and transition between its de-energized and fully...

Solenoid Valve Basics: What They Are, What They Do, and How They Work

May 13, 2024
A solenoid valve is an electromechanical device used to control the flow of a liquid or gas. It is comprised of two features: a solenoid and a valve. The solenoid is an electric...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!