Performance under pressure

Nov. 16, 2000
Electric motors powering undersea remotely operated vehicles (ROVs), such as the Quest ROV from Alstom GEC, Davis, Calif., must withstand pressures of 10,000 psi at depths to 20,000 ft below sea level.

This environment demands that motors be encapsulated in a very strong material with high thermal conductivity. That's where LNP Engineering Plastics of Exton, Pa., comes in.

Thermal conductivity of a motor's encasements is essential for preventing heat buildup and potential burn out. LNP's Konduit thermally conductive composites are said to provide significantly greater thermal conductivity than typical unfilled and reinforced thermoplastics.

In the Quest ROV, 10 Konduit-encased electric motors replace hydraulic thrusters.

"The motors must withstand approximately 5 tons of pressure," according to Griffith Neal, founder of the San Francisco-based Encap Technologies, an engineering consultancy contracted by Alstom to help develop the ROV's submersible motor. "Conventional plastics don't transfer the heat generated in the windings," he says. "In 7,500-W motors such as those in the ROV, the wire will melt if packaging material does not dissipate heat."

Konduit is claimed to be 10 to 50 times more thermally conductive than typical unfilled and reinforced thermoplastics. Another key benefit is its low coefficient of linear thermal expansion (CLTE). According to Neal, Konduit is the only material that matches the CLTE performance of metals over the molding temperature range. To successfully eliminate plastic micro-fissures caused by differential contraction on cooling, LNP tailored a resin with a specific CLTE performance. Matching the CLTEs eliminates cracking from thermal shock that can hinder plastic application development in larger parts.

Three other thermoplastic compounds from LNP are used in the Quest ROV including Verton long-fiber composites in the nozzle flanges that protect the motor, bearings, and impeller; Lubricomp-lubricated composites in hydrodynamic bearings; and Thermocomp-reinforced composites used in the bearing flanges.

---
Ten electric thrusters on each ROV are oriented in different planes to give full control of the vehicle's movement. Most ring motor parts are made from engineering thermoplastics. Both the magnets in the rotor and the windings in the stator are completely encapsulated in Konduit thermally conductive composites to both protect it from water and carry heat away from the windings.

Sponsored Recommendations

High Pressue, High Temperature Pump

April 29, 2024
This innovative axial piston design eliminates the use of elastomers, increases resistance to contamination, and dramatically improves reliability. They can generate up to 10,...

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

A Comprehensive Guide for Automation Success

April 17, 2024
Gain insight into the benefits that SEW-EURODRIVE's streamlined automation processes offer to industries involved in machine automation and factory operations.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!