Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    Machinedesign 1748 0812nws Plasttriboelectric Schematic 0 0
    1. Archive

    Harvesting energy from plastics

    Aug. 1, 2012
    Scientists have discovered another way to harvest tiny amounts of electricity from motion in everyday activities, and it involves capturing the electrical charge produced when two different plastic materials rub against each other.
    Motionsystemdesign Com 0812 Nws Plast Triboelectric Schematic

    Scientists have discovered another way to harvest tiny amounts of electricity from motion in everyday activities, and it involves capturing the electrical charge produced when two different plastic materials rub against each other. Based on flexible polymer materials, this so-called “triboelectric generator” could provide ac power from activities such as walking.

    The new generator could supplement power produced by nanogenerators that use the piezoelectric effect to create current from the flexing of zinc oxide nanowires. What’s more, because the triboelectric generators can be made nearly transparent, they could offer a new way to produce active sensors that might replace technology now used in touch-sensitive displays.

    “The fact that an electric charge can be produced through this principle is well known,” says Zhong Lin Wang, a professor in the School of Materials Science and Engineering at Georgia Tech. “What we’ve introduced is a gap separation technique that produces a voltage drop, which leads to a current flow, allowing the charge to be used. This generator can convert random mechanical energy from our environment into electric energy.”

    The triboelectric generator operates when a sheet of polyester rubs against a sheet made of polydimethysiloxane (PDMS). The polyester tends to donate electrons, while the PDMS accepts them. Immediately after the surfaces rub together, they are mechanically separated, creating an air gap that isolates the charge on the PDMS surface and forms a dipole moment. If an electrical load is then connected between the two surfaces, a small current will flow to equalize the charge potential. By continuously rubbing the surfaces together and then quickly separating them, the generator can provide a small alternating current.

    The technique could also be used to create a sensitive self-powered active pressure sensor for potential use with organic electronic or opto-electronic systems. The force from a feather or water droplet touching the surface of the triboelectric generator produces a small current that can be detected to indicate the contact. Because the devices can be made approximately 75% transparent, they could potentially be used in touch screens to replace existing sensors. The next step is to create systems that include storage mechanisms for the generated current. For more information, visit gatech.edu.

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Technology For Optimizing Sliding Door Mechanics: Precision-Machined Hybrid Polymer Roller

    Track Rollers Reimagined: Durability Meets Innovation

    Engineer’s Guide: Unforeseen Benefits of Polymer-Hybrid Cam Followers

    Most Read

    A Beginner’s Guide to Design Failure Mode and Effects Analysis (DFMEA)

    Using Natural Language Understanding to Power Productivity

    Brushed vs Brushless Motors: Which is Best for your Application?

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo