What's in your robot?

Sept. 1, 2008
A few weeks ago, at the Worldwide Graphical System Design Conference in Austin, Texas, I had the pleasure of leading a discussion on robotics among a

A few weeks ago, at the Worldwide Graphical System Design Conference in Austin, Texas, I had the pleasure of leading a discussion on robotics among a panel of experts that included MIT professor, Woodie Flowers; Virginia Tech professor, Al Wicks; Sam Kherat, director of the Pittsburgh Automation Center; and Charlie Knapp, program manager for robotics and unmanned systems at National Instruments. In the opening minutes, the group established the fact that there are no clear cut definitions when it comes to robotics. Then we proceeded to thoroughly address the topic that none of us could precisely define.

What the panel actually talked about, in clear and concise terms, was something all of us here can relate to; the development of systems incorporating multiple points of torque and force regulated by sensor feedback and command inputs. That's correct: We talked about motion system design as practiced today, and how it's being leveraged to automate all sorts of things from remote surgery to packing egg cartons at lightning speed.

Robotics, like any other area of motion-centric automation, is essentially a subset of motion system design. As such, it combines a multitude of technologies — mechanical, electrical, electronic, computer — and relies on a variety of components, including sensors, actuators, linkages and mechanisms, gears, belts, bearings, slides, signal-processing hardware and software, data networks, controllers, and more. When people talk about “robotics,” especially when they focus on working systems, these are the things that come up.

It wasn't all that long ago, however, that a discussion on “robotics” would have been more of an exercise in fantasy than a reality-based dialogue. The word “robot,” as you may know, comes from the realm of science fiction, first appearing in the title of a play — R. U. R. (Rossum's Universal Robots) — written by Karel Capek in the early 1920s. In Capek's sci-fi thriller, a scientist and his son build a mechanical workforce to perform menial human tasks, an invention the writer describes in his native Czech with the word robota, meaning drudgery or servitude.

When R. U. R. premiered in Prague in 1921, no one could have predicted how quickly technology would catch up to Capek's fertile imagination. Within 10 years, the analog computer was born — a major step — followed by a series of transformational inventions, including the transistor, the integrated circuit, the microprocessor, and the field-programmable gate array.

Meanwhile, advances in software, though occurring more slowly, were to eventually unlock the computer's potential. Not even Capek could have imagined what was to come; that tracing lines and connecting images on screen would produce executable computer code and working mathematical models. This highly expressive form of programming — graphical system design — is what brought the panel and me to Austin in the first place.

Back when the term “robot” first captured man's attention, motion systems were almost entirely mechanical. Most of the timing and control functions — from the lowest to the highest levels of abstraction — were synthesized from mechanical assemblies and limited in range and scope. Today, however, as the panelists confirmed, almost everything that moves — whether on wheels, wings, or pods — is of interdisciplinary origin designed with adaptation in mind. We may not agree on the definition of robotics, but we must all admit to the reality of it.

About the Author

Larry Berardinis

For more than two decades, Lawrence (Larry) Berardinis served on Machine Design and Motion System Design magazines as an editor and later as an associate publisher and new-business development manager. He's a member of Eta Kappa Nu, and holds an M.S. in Solid State Electronics. Today, he is the Senior Manager of Content Programs at ASM International, formerly known as the American Society for Metals.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!