Getting out of a sticky situation

June 1, 2006
Researchers at the National Institute of Standards and Technology (NIST) and George Mason University (GMU) have found an easy way to bond thermoplastic

Researchers at the National Institute of Standards and Technology (NIST) and George Mason University (GMU) have found an easy way to bond thermoplastic microchannel plates together with solvent. This technology could be used for low-cost, high-volume production of disposable “lab-on-a-chip” devices.

Microfluidics could perform rapid and inexpensive chemical and biochemical analyses using tiny channels less than a fraction of a millimeter wide to move samples and reagents through the device. For high-volume production, the channels likely will be molded or embossed in high-quality thermoplastic and then sealed with a cover plate. However, bonding the two pieces together securely without blocking or altering the channels may pose a problem.

One approach is to weld the two plates together by clamping them and heating the plastic until the polymer chains begin diffusing together. This requires just the right combination of time, pressure, and temperature — which must be fine-tuned for each new lot of plastic. The other method is to weld the pieces with a solvent-type glue.

A team from NIST and GMU suggests clamping the two plates together, injecting a tiny amount of solvent at one end of the network of channels, and applying a vacuum at the other end. As the solvent is quickly sucked through the channels without clogging, a minute amount is drawn between the plates by capillary action and welds them together. The whole process takes about 8 minutes. To demonstrate utility, the team used this technique to successfully perform high-efficiency electrophoretic separation of 400-base single-strand DNA ladders — a typical microfluidics application — in the devices fabricated.

Sponsored Recommendations

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.


May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Solenoid Valve Mechanics: Understanding Force Balance Equations

May 13, 2024
When evaluating a solenoid valve for a particular application, it is important to ensure that the valve can both remain in state and transition between its de-energized and fully...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!