Joachim Uhing

April 1, 2006
In the late 1940s, Joachim Uhing was working in a factory in Germany that made thread guides and other parts for industrial knitting machines. As in many

In the late 1940s, Joachim Uhing was working in a factory in Germany that made thread guides and other parts for industrial knitting machines. As in many plants at the time, most of the machines in Uhing's facility were driven by a common shaft running along the ceiling. At various points, belts ran from the shaft, carrying mechanical power down to the equipment.

One day, as Uhing was making his rounds, a shaft-support bearing slipped from its mounting and began traveling along the rotating drive shaft. When it reached the end, it bumped a stop and began moving back in the opposite direction. It was obvious to the engineer Uhing that the force causing the bearing to run back and forth was friction.

Uhing thought further about what he had observed, and how he might apply it to create a linear drive from a smooth rotating shaft like the one in his plant. The timing couldn't have been better — knitting machine manufacturers were looking for a device to automate the traversing movements of the carriages on their equipment.

Within a year, Uhing came up with a design based on a smooth shaft and a drive nut consisting of three slightly oversized bearings angled relative to the shaft. The operating principle is relatively simple: The spring-loaded bearings generate friction force at their point of contact with the shaft. The angle of the bearing rings relative to the shaft determines the net force and, hence, the speed and direction of travel.

Today, rolling-ring linear drives are used in a wide variety of linear motion applications, involving winding, slicing, spooling, slitting, spraying, and scanning; in general, any process that requires positioning, indexing, or reciprocating motion.

Special thanks to Uhing Co. and Amacoil Inc., Aston, Pa., for providing information used in this article. For specs and other data on rolling-ring linear drives, contact Bob Eisele at [email protected] or (800) 252-2645.

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!