In Sights Fly farther

Jan. 1, 2009
This image shows the flow around a golf ball traveling at speeds up to 100 mph. The computations are among the largest direct numerical simulations of

This image shows the flow around a golf ball traveling at speeds up to 100 mph. The computations are among the largest direct numerical simulations of complex flows ever performed, involving billions of grid points. The aim is to pinpoint how dimples dramatically reduce the drag force on a golf ball. Although the United States Golf Association (USGA) regulates golf ball design, including size and weight, the dimple pattern is not standardized. Up to now, sporting goods companies designed dimple patterns by trial and error, testing prototypes against one another. The new study looks at how to design dimple size and pattern based on mathematical equations that model the physics of a golf ball in flight. The project is a collaboration between Dr. E. Balaras from the University of Maryland, Dr. K. Squires from Arizona State University, and Masaya Tsunoda of Sumitomo Rubber Industries.

Click here to view the PDF

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!