Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    The new flow battery developed at the Pacific Northwest National Laboratory was tested in a benchtop-cell much like this flow-battery set-up.
    1. Automation & IIoT
    2. Batteries/Power Supplies

    New Flow Battery Could Back-Up Local Grids, Power Cars and Trains

    Feb. 25, 2015
    A new zinc-polyiodide redox flow battery developed at the Pacific Northwest National Laboratory (PNNL) has nearly the energy density of lithium-ion batteries, and is inherently fire safe.

    A new zinc-polyiodide redox flow battery developed at the Pacific Northwest National Laboratory (PNNL) has nearly the energy density of lithium-ion batteries, and is inherently fire safe. With further development, this small, energy-dense battery could be used to strengthen and back-up local power grids. It might also power cars and trucks, as well as trains.

    Like other flow batteries, the zinc-polyiodide version generates power by pumping a pair of liquid electrolytes from individual tanks into separate sections inside a common container. The two liquids the research team used as electrolytes in a demonstration battery were zinc-polyiodide and zinc-iodide. A semipermeable membrane separates the sections but permits zinc ions to pass through to the negative (anode side) and create electricity through chemical reactions.

    The demonstration battery put out more energy than today’s most commonly used flow batteries: the zinc-bromide and vanadium batteries. It also put out nearly 70% of the power of a lithium-ion battery.

    For comparison, the new battery discharged 167 watt-hours per liter of electrolyte. A zinc bromide discharges 70 watt-hours per liter, and a vanadium flow battery creates about 20 watt-hours per liter. The new battery could also be improved, pushing its output to 322 watt-hours per liter, by adding more chemicals to make the electrolyte solutions stronger.

    PNNL’s battery has several advantages over other flow batteries. It is safer for people and the environment because it does not use acidic electrolytes. The water-based liquids it does use make the battery almost impossible to set on fire, unlike lithium-ion batteries that can overheat and ignite. The electrolytes are not corrosive, so there’s no need for expensive materials to contain or pump them.

    The new battery also works in temperatures ranging from -4°F to 122°F, a much wider climactic range than other battery chemistries which require heating or cooling systems to operate. Such additional components cut into a battery’s net power production.

    The team ran into one problem—a build-up of metallic zinc that grew from the battery’s negative electrode and went through the membrane. The metallic zinc contamination made the battery less efficient. Researchers reduced the buildup, called zinc dendrite, by adding alcohol to the electrolyte solution.

    Managing the problem of zinc dendrite formation will be one key to making zinc-polyiodide batteries usable in the real world. Researchers will continue to experiment with different alcohols and other additives, as well as use advanced instruments to characterize how the battery's materials respond to them. Some of the advanced tools they use to characterize the new battery's chemical interactions include nuclear magnetic resonance, Raman spectroscopy, mass spectroscopy, and more. The team will also build a larger, 100-watt-hour model of the battery for additional testing.

    This research program was funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability.

    Continue Reading

    Emergent Technologies That Improve Productivity and Flexibility

    The Rise of the Sustainability Engineer

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Most Read

    Brushed vs Brushless Motors: Which is Best for your Application?

    Edge Computing & Gaining Value

    How Much Should a Bolted Joint be Tightened?

    Sponsored

    Keyed Solenoid Locking Safety Switches

    Push-In Terminals versus Other Types of Connections

    Safeguarding Machines with Hard Guards and Solenoid Locking Switches

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo