Three packs of supercapacitors in the blue package consisting of six Dsize cells each 18 cells total were able to provide and store the same amount of electrical energy as the smaller pack of six AAsize TLI 1550 Liion rechargeable batteries

What’s the Difference Between Batteries and Capacitors?

May 11, 2015
Will capacitors replace batteries?
1. Three packs of supercapacitors (in the blue package), consisting of six D-size cells were able to provide and store the same amount of electrical energy as the smaller pack of six AA-size TLI 1550 Li-ion rechargeable batteries.

Batteries and capacitors seem similar as they both store and release electrical energy. However, there are crucial differences between them that impact their potential applications due to how they function differently.

Supercapacitors

2. A capacitor (top) aligns the molecules of a dielectric across an electric field to store energy. A supercapacitor (bottom) aligns the charges of an electrolyte on either side of an insulator to store a double-layer charge.

A capacitor consists of two or more conductive plates separated by a dielectric. When an electric current enters the capacitor, the dielectric stops the flow and a charge builds up and is stored in an electric field between the plates. Each capacitor is designed to have a particular capacitance (energy storage). When a capacitor is connected to an external circuit, a current will rapidly discharge.

In a supercapacitor, there is no dielectric between plates; rather, there is an electrolyte and a thin insulator such as cardboard or paper. When a current is introduced to the supercapacitor, ions build on either side of the insulator to generate a double layer of charge. (See figure 2.) Supercapacitors are limited to low voltages, but very high capacitance, as a high voltage would break down the electrolyte. 

Batteries

Different battery types are distinguished by their chemical makeup. The chemical unit, called the cell, contains three main parts; a positive terminal called the cathode, negative terminal called the anode, and the electrolyte. The battery charges and discharges through a chemical reaction that generates a voltage. The battery is able to provide a consistent DC voltage. In rechargeable batteries, the chemical energy that is converted into electricity can be reversed using an outside electrical energy to restore the charge.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Differences

Source: Battery University

While batteries and capacitors have similarities, there are several key differences. The potential energy in a capacitor is stored in an electric field, where a battery stores its potential energy in a chemical form. The technology for chemical storage currently yields greater energy densities (capable of storing more energy per weight) than capacitors. However, when a battery is discharging it can be slower than a capacitor ability to discharge because there is a latency associated with the chemical reaction to transfer the chemical energy into electrical energy. A capacitor is storing the electrical energy directly on the plates so discharging rate for capacitors are directly related to the conduction capabilities of the capacitors plates. A capacitor is able to discharge and charge faster than a battery because of this energy storage method also. The voltage output of a supercapacitor declines linearly as current flows.

This table compares the pros and cons of batteries and capacitors

While other differences exist, batteries and capacitors do have some overlapping applications. However, in general batteries provide higher energy density for storage, while capacitors have more rapid charge and discharge capabilities (greater Power density). The demand for fast portable power has researchers trying to increase charging and discharging times in batteries, while increasing storage capacity in capacitors. While research continues to improve batteries and capacitors there are still have distinct characteristics that make each applicable to individual uses.

About the Author

Jeff Kerns | Technology Editor

Studying mechanical engineering at Rochester Institute of Technology (RIT), he worked in the Polymer Research Lab. Utilizing RIT’s co-op program Jeff worked for two aerospace companies focusing on drafting, quality, and manufacturing for aerospace fasteners and metallurgy. He also studied abroad living in Dubrovnik, Croatia. After college, he became a commissioning engineer, traveling the world working on precision rotary equipment. Then he attended a few masters courses at the local college, and helped an automation company build equipment.

Growing up in Lancaster County, PA he always liked to tinker, build, and invent. He is ecstatic to be at Machine Design Magazine in New York City and looks forward to producing valuable information in the mechanical industry. 

Like him on Facebook and follow him on Twitter.

Sponsored Recommendations

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Solenoid Valve Mechanics: Understanding Force Balance Equations

May 13, 2024
When evaluating a solenoid valve for a particular application, it is important to ensure that the valve can both remain in state and transition between its de-energized and fully...

Solenoid Valve Basics: What They Are, What They Do, and How They Work

May 13, 2024
A solenoid valve is an electromechanical device used to control the flow of a liquid or gas. It is comprised of two features: a solenoid and a valve. The solenoid is an electric...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!