Faster computing from reconfigurable processors

Nov. 17, 2005
The next leap in computer performance may come from letting computer processors reconfigure themselves to operate more efficiently.

The next leap in computer performance may come from letting computer processors reconfigure themselves to operate more efficiently.

Such a computer would be equipped with FPGAs ( field-programmable gate arrays). Computer maker SGI, Mountain View, Calif., says its Reconfigurable Application-Specific Computing (RASC) technology based on FPGA chips crunches through problems in as little as 1 to 3% of the time needed by conventional computers.

Because FPGA logic can be dynamically reconfigured from 100 to 1,000 times/sec, it is possible to optimize the chips for complex, special tasks at speeds that are higher than those available from general-purpose processors. So far, SGI is aiming the technology at calculation-intensive engineering tasks sometimes called high-performance computing or HPC.

A typical application will be at oil and gas companies that have developed algorithms for sizing up rock geology from huge amounts of raw data. Software would configure the FPGA to efficiently compute each algorithm. In effect, the processor becomes a dedicated compute engine for specific routines.

Such reprogramming has historically required high levels of expertise, so FPGA-based acceleration has yet to penetrate HPC markets. However, SGI and companies that build and program FPGAs have developed software for that task as well.

"RASC technology improves on performance, scalability, and bandwidth for data-intensive applications," says Bill Mannel, SGI director of marketing for the server and platform group. The reconfigurable computing technology comes as an add-in module that works with SGI servers.

SGI says compute power can be scaled up by connecting multiple RASC expansion modules into a single shared-memory system. The company has developed RASC technology not only for exploration of oil and gas deposits but also for other applications using Fast-Fourier Transform algorithms. Defense and intelligence areas are expected to benefit from more efficient signal-processing, edge-detection, and pattern-recognition routines.

Sponsored Recommendations

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

A closer look at modern design considerations for food and beverage

April 9, 2024
With new and changing safety and hygiene regulations at top of mind, its easy to understand how other crucial aspects of machine design can get pushed aside. Our whitepaper explores...

Cybersecurity and the Medical Manufacturing Industry

April 9, 2024
Learn about medical manufacturing cybersecurity risks, costs, and threats as well as effective cybersecurity strategies and essential solutions.

Condition Monitoring for Energy and Utilities Assets

April 9, 2024
Condition monitoring is an essential element of asset management in the energy and utilities industry. The American oil and gas, water and wastewater, and electrical grid sectors...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!