Image

How to Calculate the Torsional Stiffness of Rubber Shock Mounts

March 30, 2015
How to calculate the torsional stiffness of rubber shock mounts when all the company supplies are its radial and axial spring rates. Shock, awe, and vibration

Rubber shock mounts, those simple annularly shaped discs, can cushion shocks and vibrations in the radial and axial directions. Sometimes, however, engineers need to use them to isolate torsional shocks as well. Unfortunately, manufacturers usually only publish the axial and radial spring rates, leaving engineers to guess at the torsional values.

Here is a simple equation that relates the torsional spring rate to the radial spring rate and geometry of the mount.

The radial spring rate for a rubber annular shock mount is:

The modulus of rigidity, G, is:

Therefore:

The torsional spring rate is:

Rearranging the equation for k and substituting in the equation for K yields:

For rubber materials:

Therefore:

This equation gives engineers an accurate estimate of the torsional spring rate of an annular shock mount, one with a radial depth, h, that is not more than 0.1R.

Nomenclature

E = Modulus of elasticity, psi

F = Radial force, lb

G = Modulus of rigidity, psi

H = Radial depth, in.

K = Torsional spring rate, lb-in

k = Radial spring rate, lb-in

l = Rubber thickness, in

R = Rubber inner radius, in

T = Torque, lb-in

 = Radial Deflection, in
= Torsional deflection, rad
= Poisson’s ratio

Sponsored Recommendations

Drive systems for urban air mobility

March 18, 2025
The shift of some of our transport traffic from the road to the air through urban air mobility is one of the most exciting future fields in the aerospace industry.

Blazing the trail for flying robots

March 18, 2025
Eight Bachelor students built a flying manipulator that can hover in any orientation and grasp objects. The drone is even more maneuverable than a quadrocopter and was designed...

Reachy 2: The Open-Source Humanoid Robot Redefining Human-Machine Interaction

March 18, 2025
Reachy 2 was designed to adapt to a wide variety of uses thanks to its modular architecture.

maxon IDX: The plug-and-play solution

March 18, 2025
IDX drives combine power with small space requirements - a brushless BLDC motor combined with an EPOS4 positioning controller and a gearhead inside a high-quality industrial housing...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!