Temperature gauge

Improving Material Design for Real-World Conditions

Aug. 19, 2021
Research aims to use machine learning algorithms to predict how fibrous materials react to temperature and humidity.

Researchers from Rensselaer Polytechnic Institute are using their expertise in fluid and solid mechanics to study the mechanical performance of a fibrous, porous material.

Their research, funded by a National Science Foundation grant, is a collaboration with a team from the University of Utah, aims to determine the degree to temperature changes and humidity affect materials. For example, they will study the impact of body heat and a person’s breath on the effectiveness of face masks.

Fibrous, porous materials are used in emerging technologies in aerospace, bioengineering, energy and electronics. This necessitates an in-depth knowledge about the effects of moisture and temperature on the mechanical performance of the materials.

“As you are wearing a mask, body temperature rises, and as you’re breathing through the mask, the local humidity also rises,” said Lucy Zhang, a professor of mechanical, aerospace and nuclear engineering at Rensselaer, who is leading this research. “We’re looking at the structure, functionality and the effectiveness of porous materials over time, and how they change based on these varying conditions.”

Numerical Framework

Researchers will examine various properties of fibrous materials—down to the microscale. This information will be used to build a computational model that can predict how effective a material will be in blocking various sized particles under different circumstances.

Machine learning algorithms will be employed to process the vast array of parameters and scenarios they will study, such as fiber orientation, porosity, moisture content, temperature levels, and amount of humidity and other failure mechanisms.

NSF lists the following three project objectives:

  1. Uncover new knowledge in microscale phenomena that have not previously been explored in detail involving complex transient multi-physics interactions through rigorous numerical investigations;
  2. Develop a novel approach that combines the physics-based machine-learning algorithms to draw thermo-hygro-mechanical relationships; and
  3. Establish a virtual material testing platform that enables the future design of fibrous porous materials with high mechanical efficiency and performance. 

The research team hopes to develop an accessible approach that labs can use to evaluate and improve materials intended for use in wearables, such as medical-grade masks and other protective equipment used in the aerospace, food or energy industries.

“What’s going to come out of this research is going to fundamentally change how materials are designed,” Zhang said.

The researchers point out that the project will also provide opportunities for STEM participation of women and underrepresented minorities to become the future leaders and innovators of data-enabled engineering technologies.

Editor’s Note: Machine Design's Women in Science and Engineering (WISE) hub compiles our coverage of gender representation issues affecting the engineering field, in addition to contributions from equity seeking groups and subject matter experts within various subdisciplines. Click here for more.

About the Author

Rehana Begg | Editor-in-Chief, Machine Design

As Machine Design’s content lead, Rehana Begg is tasked with elevating the voice of the design and multi-disciplinary engineer in the face of digital transformation and engineering innovation. Begg has more than 24 years of editorial experience and has spent the past decade in the trenches of industrial manufacturing, focusing on new technologies, manufacturing innovation and business. Her B2B career has taken her from corporate boardrooms to plant floors and underground mining stopes, covering everything from automation & IIoT, robotics, mechanical design and additive manufacturing to plant operations, maintenance, reliability and continuous improvement. Begg holds an MBA, a Master of Journalism degree, and a BA (Hons.) in Political Science. She is committed to lifelong learning and feeds her passion for innovation in publishing, transparent science and clear communication by attending relevant conferences and seminars/workshops. 

Follow Rehana Begg via the following social media handles:

X: @rehanabegg

LinkedIn: @rehanabegg and @MachineDesign

Sponsored Recommendations

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!