KAUST
Kalaivanan Loganathan and Professor Thomas Anthopoulos

Organic Semiconductors Make it to the 5G Circuit

March 18, 2022
Scientists overcome the limitation of organic semiconductors and redesign the way Schottky diodes are used in large-area electronics of the future.

The demand for low-cost, flexible wireless communications and applications has stoked interest in wireless energy harvesting innovation. For example, scientists were able to use organic material for a novel design of a semiconductor for radio-frequency circuits. Notably, the organic semiconductor has applicability in 5G applications, according to the group of international scientists led by King Abdullah University of Science and Technology (KAUST).

Basic Principles

Although organic semiconductors share some of the same physical properties as their inorganic counterparts, such as silicon-based semiconductors, there are significant differences. One difference is that inorganic semiconductor molecules are held together by weak van der Waals interactions, whereas organic semiconductors are held together by covalent bonds.

This distinction underscores property variations of devices using organic versus inorganic semiconductors. On the upside, organic semiconductors are made using solvent-based processing techniques, making them cheaper and more flexible for use in printing or blade and die coating, explained Ph.D. student Kalaivanan Loganathan.

On the downside, electrical charges move much slower in organic materials. This drawback is a barrier to applying organic semiconductors for use in fast applications such as radio-frequency electronics, noted the scientists.

“To make this technology useful for the 5G frequency band, there is a need to fabricate organic Schottky diodes,” Loganathan said.

The Schottky diode allows current to pass through in one direction but blocks flow in the other. The most important difference between the more ubiquitous p–n diode and the Schottky diode, noted the scientists, is that the latter can switch from the conducting to the nonconducting state much faster. This makes them essential in radio-frequency applications.

They explained that the speed of Schottky diodes is generally limited by the device capacitance and the resistance. But organic semiconductors are often associated with high capacitance and resistance due to their low charge carrier mobility, the authors said. They are mostly employed in conventional sandwich-type architecture in which the semiconductors, metals and electrical contacts are laid one on top of the other.

Reimagined for 5G Frequency Range Loganathan, working with Professor Thomas Anthopoulos and his team, redesigned the device architecture and placed the two electrical connections side-by-side. The organic semiconductor, referred to as C16IDT-BT, was placed in a tiny gap of just 25 nanometers in between the diodes. The diodes in this structure have an ultralow capacitance and resistance.

The scientists showed that the Schottky diode operated up to a frequency of 6 GHz (6 billion cycles per second). They extended the frequency to 14 GHz by chemically doping the semiconductor with the addition of another molecule.

“Our results show that organic semiconductors are capable of operating in the 5G frequency range, like their inorganic counterpart,” said Loganathan, adding that these organic semiconductors can be mass-manufactured at low cost using solution processing.

The team noted that they hope to integrate their diodes into radio-frequency circuits, ID tags and wireless energy harvesting devices.

The findings were published in Advanced Materials.

About the Author

Rehana Begg | Editor-in-Chief, Machine Design

As Machine Design’s content lead, Rehana Begg is tasked with elevating the voice of the design and multi-disciplinary engineer in the face of digital transformation and engineering innovation. Begg has more than 24 years of editorial experience and has spent the past decade in the trenches of industrial manufacturing, focusing on new technologies, manufacturing innovation and business. Her B2B career has taken her from corporate boardrooms to plant floors and underground mining stopes, covering everything from automation & IIoT, robotics, mechanical design and additive manufacturing to plant operations, maintenance, reliability and continuous improvement. Begg holds an MBA, a Master of Journalism degree, and a BA (Hons.) in Political Science. She is committed to lifelong learning and feeds her passion for innovation in publishing, transparent science and clear communication by attending relevant conferences and seminars/workshops. 

Follow Rehana Begg via the following social media handles:

X: @rehanabegg

LinkedIn: @rehanabegg and @MachineDesign

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!