Protecting Motors

Nov. 15, 2002
Motors should have protection for themselves, the branch circuit, and the feeder line.

Motors should have protection for themselves, the branch circuit, and the feeder line. Other protection, provided by fuses and circuit breakers, guards against fault conditions caused by short circuits or grounds and overcurrents exceeding locked-rotor values.

Selecting motor protectors: Line current to the motor and internal motor temperature determine motor protection. Many protectors respond to only one of these parameters. Others are both current and temperature responsive. However, use of one protector of each is not uncommon.

Current-responsive protectors are normally located in the motor or between the motor controller and the motor. In fhp and small ihp motors, temperature-responsive protectors are located within the motor and include contacts to interrupt the motor circuit. For larger motors, pilot-circuit protectors located inside the motor open the holding coil circuit of the motor-controller contactor.

Temperature-responsive protectors are assembled as integral parts of motors in order to protect against dangerous overheating from overload or failure to start. This thermal protection is provided by line-break devices or by control-circuit systems.

There are several suitable methods for motor protection. Current-responsive protectors provide safeguards against common causes of overload where the line current increases appreciably. However, they do not respond to overtemperature caused by hot ambient conditions or blocked ventilation. On the other hand, temperature-responsive devices protect against running overloads that produce a gradual increase in winding temperature.

Line-break thermal protectors are prevalent in smaller motors, while control-circuit systems are common on larger motors. Thermistor systems provide complete protection with small sensors in the motor. In many high-slip induction motors, the critical temperature occurs in the rotor. Temperature measurement requires slip rings and brushes, making current relays a better choice. Special motors may be designed for continuous locked-rotor current, but are still susceptible to burnout from blocked ventilation. Temperature-responsive devices are best used here.

Sponsored Recommendations

March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...
March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...
March 31, 2025
Discover the world of maxon drive technology: motors, gearheads, sensors, controllers, and accessories. Configure your drive system online, including all relevant product and ...
March 31, 2025
Share current page XSun designs and manufactures a drone that is both energy-independent and can make its own decisions, for fully-automated missions. The company needed reliable...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!