Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    Machinedesign 1213 Ezv Series Line510 0 0
    1. Motors & Drives

    Line shafting mechanical and electronic

    May 1, 2010
    Different approaches to keeping axes coordinated exist.
    Motionsystemdesign Com Images Ezv Series Line510

    In applications such as printing and paper converting, where separated sides or ends of a moving machine must be synchronized, the most obvious solution is to physically connect them. Here, line shafts often fit the bill. These mechanical rods consist of a main body and servocoupling ends — to transmit torque over long stretches while compensating for the inevitable misalignment between the moving parts being coupled.

    One line shaft manufactured by R+W America, Bensenville, Ill., is laterally quite stiff, so can transmit up to 35,400 in. lb over spans from 9.5 in. to 10 ft without center support. Called the ZA, these line shafting assemblies consist of two hydroformed stainless steel bellows, which compensate for misalignment with zero backlash and high torsional stiffness. Between the two bellows is straight cut-to-length tube. The connection between the bellows and tubing is safeguarded by a set of gimbals on each end of the shafting assembly. These gimbals transfer the tube's weight onto the coupling hubs, protecting the bellows from bearing its lateral load. A flanged connection between the tube and the bellows also allows for lateral mounting.

    Electrical options

    Another approach to line shafting is to forgo mechanical connections and electronically synchronize isolated parts that must work in conjunction. Over the last 15 or so years, many portions of the packaging and printing industries have adopted this approach. Called electronic line shafting, the technique has some key characteristics. First of all, electronic line shafting requires a motion-control program that establishes a master machine axis. (Sometimes, a virtual master axis is built into the control model.) Then, target positions are communicated over a network to each axis slaved to the master; these slave axes are commanded through a controller to follow moves prescribed for each master position and speed. The benefit is that the machine can be easily modified.

    Motionsystemdesign Com Images Leveraging Distributed Control510

    Electronic line shafting is particularly useful in registration applications — where separately applied colors or inks on an automated printing or packaging application are aligned with one another. That's because most modern printing operations make use of unwinder and winder axes, as well as four flexographic rolls per color applied to the paper, film, or plastic being labeled or marked. The latter pick up ink, project the image onto a mating roll, and then transfer that to yet another roll that contacts the material to be printed … while synchronizing with a final roll that presses the material to the printing barrel. Traditionally, these are mechanically synchronized — just as separate flexographic-roll sets are coordinated. Increasingly common are software programs, sensors, and controls that eliminate that requirement, as well as test runs and the like.

    Benefits aside, electronic life shafting has one major drawback: Critical machine-cycle motion profiles can erode the most susceptible axis — the weakest link — so often the entire machine is slowed to protect this axis, which also reduces throughput.

    Motionsystemdesign Com Images Mechanical Line Shafting200 510

    To keep productivity high while protecting the most delicate motion axis, another arrangement devised by Schneider Electric, Palatine, Ill., is driven by controls and is called intelligent line shafting. Here, the master axis receives feedback from the others and calculates whether an individual axis will exceed its maximum speed or acceleration during the next machine cycle. Then the enabled master slows that axis down to stay within set limits. During noncritical motion phases, the virtual master then substantially increases the speed of that axis to beyond its previous set speed, to compensate for the slower segment.

    For more information

    R+W America
    www.rw-america.com
    (630) 521-9911

    Schneider Electricelau.com
    (847) 490-4270

    Drive.Web Control Technologies
    driveweb.com
    (888) 667-7333

    SEW Eurodrive
    www.seweurodrive.com
    (864) 439-8792

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    EXAIR Introduces PEEK ½ NPT Super Air Nozzle

    Using Natural Language Understanding to Power Productivity

    Intelligent Assistant Platforms Improve Conversations with Industrial Robots

    Most Read

    Brushed vs Brushless Motors: Which is Best for your Application?

    The Cyber-physical Training Module

    How Much Should a Bolted Joint be Tightened?

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo