Daniel Rizzo/UC Berkeley
Wide-band metallic graphene nanoribbon

Will Carbon replace Silicon in Transistors and Computers?

Sept. 29, 2020
Researchers develop carbon wire to complete the toolbox needed for carbon-based circuits.

A team of scientists at the University of California, Berkeley have created a metallic wire made entirely of carbon, setting the stage for research into carbon-based transistors and computers. Carbon-based transistors could boost computer speed by more than a thousandfold and reduce power consumption.

The team has been working for several years on making semiconductors and insulators from graphene nanoribbons—narrow, one-dimensional strips or ribbons of atom-thick graphene composed of carbon atoms in an interconnected hexagonal pattern. The metallic nanoribbons are assembled from smaller building blocks, with each block contributing an electron to flow along the nanoribbon. These are created chemically then arranged and and imaged on flat surfaces using a scanning tunneling microscope.

Heat was applied to induce the building locks molecules to chemically react and join together. The resulting graphene nanoribbon could be used to move conducting electrons between semiconducting nanoribbons in an all-carbon transistor.

There are other carbon-based materials that can be metallic, such as 2D sheets of graphene and carbon nanotubes. But shaping 2D sheets of graphene into nanometer scale strips spontaneously turns them into semiconductors or insulators. And carbon nanotubes, which are good conductors, cannot be transformed into wires with the same precision and reproducibility as carbon nanoribbons.

Graphene, which is pure carbon, is a leading contender for these next-generation, carbon-based computers. Narrow strips of graphene are primarily semiconductors. The challenge is to make them act as conductors and insulators so that transistors and processors could all be made of carbon. Carbon-based computers should switch many times faster than silicon versions and use only a fraction of the power.

Sponsored Recommendations

High Pressue, High Temperature Pump

April 29, 2024
This innovative axial piston design eliminates the use of elastomers, increases resistance to contamination, and dramatically improves reliability. They can generate up to 10,...

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

A Comprehensive Guide for Automation Success

April 17, 2024
Gain insight into the benefits that SEW-EURODRIVE's streamlined automation processes offer to industries involved in machine automation and factory operations.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!