Nanoball toner to shrink color printers

Jan. 11, 2007
Electrostatic adhesion force makes toner particles in photo-copiers, laser printers, and fax machines, temporarily stick to paper before they are permanently fused by heat.

The detailed physics of electrostatic adhesion forces are unknown. Experiments show these forces to be at least a factor of ten stronger than what Gauss' Law predicts. Gauss' equations quantify electrostatic attraction between two bodies, but assume a large distance between the bodies compared with distances between charges. In practice, contact points can be extremely small; electrostatic forces are strongest where discrete charges lie close to these contact points, explain researchers at the recent AVS International Symposium and Exhibition in San Francisco.

This has important implications for color laser printers, which use black, cyan, magenta, and yellow toners to create four separate images before transferring them onto paper. Today's color printers use a separate belt to accumulate toner images one color at a time. This adds weight, complexity, and cost.

Lower-adhesion toner would make it possible to build each color image onto a single belt without disturbing the other colors. To lessen adhesion, researchers mixed the toner particles with 10-nm-diameter silica nanoballs. The nanoballs prevent a particle's rough edges from touching surfaces, minimizing the number of contact points and adhesion. The advance could lead to single-belt color laser printers that are 70% smaller and much cheaper to build than current models.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!